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22.1 Web Caching Continued from the previous lecture

Figure 22.1: Client-Server and Client-Proxy-Server Architectures

Web caching uses client-proxy-server architecture. Clients send requests to the proxy. Proxies can service
the requests directly if they have the resources. If they do not have the resources, they go to the server to
get the request processed. In web caching, the proxy provides the service of caching i.e. the proxy caches
content from the server and when the client browsers make a request, if the content is already in the cache,
the content is returned.

22.2 Web Proxy Caching

The discussion for this section assumes a collection of proxy caches sitting in between the client and the
server. Along with communicating with the server, these proxy caches can also communicate with each
other. This mechanism is called “Cooperative Caching”. Figure 22.2 shows one such scenario where a client
sends a request to the web proxy. The web proxy will then look into it’s local cache for the requested web
page. If it is a hit, then it will send the response back. In the case of miss, typically the web proxy will
contact server. But in the case of cooperative caching, cache misses can be serviced by asking nearby/local
proxy instead of the server i.e. it will reach out to the near by proxies to get the data. This can make
fetching faster than getting data from server. Caches are cooperating with each other and clients see union
of all the content stored in nearby caches rather than just the content cached in the local proxy.
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Figure 22.2: Web Proxy Caching

22.3 Consistency Issues

What can be done if content in the proxy becomes stale? When content is updated at the server, the proxy
can no longer serve the content to the users because they will see an outdated version of the webpage.

Web pages tend to change with time. Update frequency of web content varies from page to page. When
a browser fetches a page from the server, we are guaranteed that the returned page is the most recent
version. While using proxies, we need to ensure the consistency of cache web pages. How can the proxy
maintain consistency of web content when different webpages get updated at different frequencies? There
are 2 approaches for this - pull based and push based. Regardless of the approach, the proxy is notified
either by sending an invalidate message or by sending the new updatedversion of the page.

22.3.1 Push based Approach

This approach relies on the server. It is the responsibility of the server to ensure that all the content stored
at various proxy caches are never out of date. For every webpage stored at the server, the server keeps a
table that lists all proxies that have a cached copy of that webpage. If a page is updated, server looks at the
table and finds all the proxies that have a copy of the page and notifies the proxies that the page is updated.
This notification can be of 2 types -

1. invalidate - simply inform the proxy that the webpage has changed and discard it from the cache.

2. update - send the new version of the page which automatically tells the proxy that the page was
changed and the new page can be put in the cache and delete the old version.

When to use invalidate and when to use the update message?
Invalidate is a short message which simply notifies whereas update is large message which send the entire
content of the updated page. If the content is popular at proxy, it makes more sense to update as it will
take time when proxy has to fetch the page from the server again when a subsequent request for it is made.
If the content is not popular, it makes more sense to send the invalidate message as update might waste
bandwidth by sending the page to the proxy but the proxy has no request for the webpage subsequently.

Push-based approach provides tight consistency guarantees. Proxies can also be passive, as the server does
all the work in this approach. Server becomes stateful - for every webpage it keeps track of proxies. One
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disadvantage is that, since HTTP is stateless, you need mechanisms beyond HTTP. Another disadvantage
is that the server needs to keep track of proxies forever.

Question: While the invalidate message is in transit, the cache is already stale how to deal with this ?
Answer: We cannot deal with this issue if we are using server push because even if the server instantly
sends message as soon as the file was updated there is still speed of light propagation delay for the message
to reach the proxy for this period of time proxy is going to have stale code. Strict consistency in practice is
hard to achieve in the future we’ll discuss an approach to deal with this.

22.3.2 Pull based Approach

Relies on the proxy. Proxy is responsible to maintain consistency. It polls the server periodically to check
if the previously cached page has changed. Polling is performed using conditional GET (if-modified-since
HTTP messages). That is if the web page has changed since the timestamp ’t’, GET me the updated web
page. Will return modified webpage only if it has changed.

When to poll for webpages?
Depends on the frequency of updation. For web pages which change very rarely, frequent polling is extremely
wasteful. There are no such wasteful messages in the push based approach. If the page changes much more
frequently than the polling frequency, then the proxy might cache outdated content for longer times. Thus,
polling frequency should be decided based on the update frequency of web page. There are two ways to do
this:

1. Server can assign an expiration time (TTL: time-to-live values). This time is an estimation of next
possible changes on the web page. Server can estimate it based on the past web page update frequency
history. It is likely that webpage might change after TTL so poll after TTL expires.

2. Proxy has intelligence to dynamically figure out the polling times. Poll duration is varied based on
the observed web page updates. Dynamically change polling frequency to understand average rate at
which webpage is changing.

Question: Why not just poll when you get the request?
Answer: We could do this, this is the only way we get strong consistency because when a request comes
and it’s a cache hit but we don’t know if it’s consistent we can do an If-modified-since request to check is
the cache still consistent. This guarantees you never return stale content because this way before returning
any content we check with the server for consistency.

Question: What is the downside of the approach mentioned in the above question?
Answer: Increase in latency, the reason we are caching the content at the proxy is that proxies are close to
the client and they can deliver content faster but before delivering that content every time you have to go
to the server to check we introduce another round trip time delay to go to the server which is what we were
trying to avoid from the start. You may as well go to the server and fetch the content.

Question: Do we need to worry about clock synchronization?
Answer: Not too much, assume clocks use NTP accuracy of 10 miliseconds. As webpages wont change
every 10 miliseconds (usually changed in days or weeks), need not worry about synchronization.

Question: Polling is to keep the content in the cache consistent with the server, but how does the proxy
know whether to keep the cached content at all? Maybe nobody is interested in it.
Answer: To understand when a proxy should maintain cache and when not to it has to track some
statistics. For every cached web page, it has to keep track of how many requests have been seen over some
interval of time(Request rate of the page). If the request rate is very low proxy can decide the page is no
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longer popular and evict it. on the other hand, if the request rate for a page is high proxy will decide to
keep it consistent.

Question: Pull based approach does not have persistent HTTP connections is that a limitation of this
approach and of server push has persistent connection?
Answer: Neither approach requires persistent connections. If polling frequency is less does not make sense
to keep persistent connections - wasting lot of resources. Only makes sense to do this when content is
changing frequently.

Advantages and Disadvantages
Pull based approach gives weaker consistency guarantees. Updates of a web page at server, might not be
immediately reflected at proxies. Latency to sync the content might overtake the benefits of proxies. There is
a higher overhead than server push approach, and there could be more pulls than updates. Some advantages
are that the pull based approach can be implemented using HTTP (server remains stateless). This approach
is also resilient to both server and proxy failures.

22.3.3 A Hybrid Approach: Leases

Hybrid approach based on both push and pull. 22.3 shows its worrking.

Figure 22.3: Lease

Lease is a contract between two entities(here server and proxy) in the distributed system. It specifies the
duration of time the server agrees to notify the proxy about any updates on the web page. Updates are no
longer sent by the server after lease expiration and the server will delete the state. Proxy can renew the
lease. If the page is unpopular, proxy can decide not to renew the lease for that page.

Lease is a more limited form of server push - performing push for the duration of the lease only. We get
advantages of push and do not have to keep state indefinitely. If the lease duration is zero, degenerates to
polling (pull), if duration is infinite it is server push and makes the server stateful. Duration in between zero
and infinite is a combination of both pull and push.

Tight consistency guarantees when lease is active.

22.3.4 Policies for Leases Duration

Lease duration is an important parameter. There are three policies for lease duration:

1. Age-based: Based on frequency of changes on the object. The age is the time since last update.
Assign longer leases for more frequently updated pages.

2. Renewal-frequency based: Based on frequency of access requests from clients. Popular objects get
longer leases.
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3. Server load based: If the load on the server is high, we should use shorter lease duration. This will
remove the burden of storing proxy state on server side.

Question: What is age-based lease ?
Answer: First, what does age mean here? The age of a file or web content is the time since it was modified
last i.e. time now - time file was last modified. If a file has old age it means it hasn’t been modified and a
younger file means they’ve been modified recently. We can use age to decide how long a lease should be.

Question: If the file is modified more frequently, the age will be lower so the lease time will be longer ?
Answer: In the slide it says to give longer leases to the objects with larger lifetimes, but you can do exactly
the opposite of this depends if you want to reduce the workload on the server or not. Giving long leases for
frequently updated objects increases the server load.

Question: If a proxy evicts an object from the lease, can the lease be canceled? Answer: Original lease
mechanism does not have any cancellation mechanism, but you can add one. Ideally, if you have an sactive
lease you should not evict a object but if you do for any reason there has to be either a way to cancel the
lease or you’ll get some wasted notifications from the server.

Question: Does each proxy have its own lease?
Answer: Not only does each proxy have a lease, there is a lease for each webpage at a proxy. If a proxy
caches 100 different webpages, each of them will have a different lease. It is not lease per proxy, it is lease
per webpage at a proxy. Different proxies will have different leases for the same page.

Question: Is it the proxy’s responsibility to keep track of the lease or the server’s responsibility?
Answer: Both. Server has to keep track of all active leases and send notifications whenever the webpage
changes for every active lease on that webpage. Proxy has to track lease as well. If the lease expires,proxy
decides whether to renew it or not.

Question: Do you need a separate monitoring framework to keep track of popularity of content?
Answer: Server by itself will not know how popular the content is. Sever can know the age and server load.
Proxies can track popularity of the webpage and report stats to the server. Monitoring framework can be
added to the proxy system, it is not a part of lease approach.

22.3.5 Cooperative Caching

Collection of proxies cooperate with each other to service client requests. We will assume that there is a
heirarchy as tree structure with leaf caches. Figure 22.4 explains the message flow for once single client
request in the case of “Hierarchical Proxy Caching”. The client requests for a web page. If it is a cache
miss, the proxy will send requests to it’s peers(red arrows) and parent using ICP(Internet Cache Protocol)
messages. If none of the peers have it, they will send back the non-availability response to the proxy(green
arrows). The proxy will then send an HTTP request to the parent to resolve. If there are more levels in the
heirarchy, the process will repeat for its parents and so on. The parent will fetch the data from the server
and sends the web page as response - flows down the heirarchy to the client.

This works well when a nearby proxy actually has the content. If there is a global miss - no one in the
heirarchy has the content, latency will increase significantly. As we can see, there is a lot of messaging
overhead. Also, browser has to wait for longer times in the case of cache miss on the proxy. This will affect
performance. Latency could increase - it may have been faster to just directly request from server in the
event of a cache miss on the proxy.

This is complicated as seen in the figure, as there are many arrows all over the place. To simplify, we can
flatten the hierarchy. Every proxy keeps track of what is stored in its nearby caches. Keep track of what’s
cached using table lookup - save which node has what in the table. If the content for a request in a nearby
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Figure 22.4: Heirarchical Proxy Caching

cache, it is fetched. If there is no entry in the table for a request i.e. none of the nearby caches have the
content, go to the server to get it, and add it to the table. Now there is no heirarchy, it is a flat network of
proxies. Here, lookup is local. Hit is at most 2 hops and miss is also at most 2 hops. Every time you fetch
or delete a page, you update the table for all the nodes. Every node keeps a global table that must be kept
consistent. There is an additional overhead for keeping this consistent but performance is better.

Figure 22.5: Locating and Accessing Data in the Flattened Network

Question: Why could we not use Heirarchical Proxy Caching if there are only popular web pages?
Answer: True, all popular pages are not going to see the problem of cache miss because very likely they
are there almost at every cache, but we cannot assume users will only request for popular pages they can
ask for any page

Question: In the server push approach or lease approach, can you use multicast to notify all proxies?
Answer: The notifications can be sent as either n unicast messages one to each proxy that has the
content or a single multicast message where all proxies are listening so that is a more efficient way of sending
messages. That is orthogonal to whether lease is being used or not
Follow-up Question: If you do multicast, you don’t require lease?
Answer: The reason a lease is required is if you don’t have a list of which proxies to notify and send an
update to every proxy in the system, maybe only 10 out of 10000 proxies have the content. You have now
wasted messages by sending message to 10000 proxies. Even though it is a multicast message, you are still
using network resources to send it. If you want to multicast, you want to send it only to the proxy group
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that has the content and so you need to track that.

Question: If you want to do multicast, how to identify proxies that have the content?
Answer: You would have to construct a multicast group for every webpage. When a proxy caches that
content, put that proxy in that group. When the content is removed from proxy, remove proxy from the
group.

Question: If you have heirarchical proxy caching system, can different proxies use different consistency
mechanisms - some push some pull?
Answer: That would be a problem. Since caches are interacting with each other, it is better to use uniform
consistency mechanism.

22.4 Edge Computing

It is the evolution of proxy servers into a more general approach where servers are deployed at the edge of the
network and they provide a service. These servers can provide more than just caching services. Applications
can be run on these servers. Edge computing is a paradigm where applications run on servers located at the
edge of the network. Benefits include lower network latency than remote cloud servers, higher bandwidth
and can tolerate network or cloud failures.

Cloud computing platforms are treating edge computing as an extension of cloud computing where cloud
resources are being deployed closer to users rather than in far off data centers.

22.4.1 Edge Computing Origins

Edge computing evolved simultaneously from mobile computing and web caching.

Content Delivery Networks - As web caching became popular, several commercial providers offered proxy
caching as a service - they deployed proxy caches in many different networks. If you were an operator of a
web app you could become a customer and they could cache your content and deliver to your customers for
a small fee. These companies deployed CDNs - large network of proxy caches deployed all over the world.
You could offload your content to these proxy caches and deliver to end users at low latency. This network
of caches was an early form edge computing.

Mobile Computing - Early mobile devices were resource and energy constrained. Not advisable to do heavy
computations on these devices. One approach was to put servers near the edge of the wireless network. The
work was offloaded to the edge server. This was called computation offloading - offloading work from one
device(mobile device) to another(edge server). This approach was also an early form of edge computing by
offloading computation at low latency.

22.4.2 Content Delivery Networks (CDNs)

Global network of edge proxies that provide caching services among other services to deliver web content.
Useful to deliver rich content like images or video content which can increase the load on server significantly
as its better to cache such content to reduce load on server. Commercial CDNS deploy lots of these servers
in many different networks. Servers are deployed as clusters of different sizes depending on the demand.

Content providers are customers of CDN service. They decide what content to cache. Consistency is the
responsibility of the content provider.



22-8 Lecture 22: May 1

Users access website normally, the content is fetched by browser from CDN cache.

22.4.2.1 CDN Request Routing

Because they have lots of different servers, when a request comes in, CDN has to decide which proxy has to
serve that request. Request for the same content is sent to different proxies based on location of the user.
The idea is to send the request to the server nearest to user. Request routing is routing the request to the
right proxy to get it served at the lowest latency. How do CDNs do this? They have large load balancers
that look at incoming requests and send it to different proxies. Typical CDNs have 2 level load balancer:

1. gloabl level - decide whcich cluster to send the request to. nearest cluster is chosen

2. local level - once request is mapped to a cluster, which server in the cluster will serve the request.

Deciding which is the closest cluster or closest server is done using Domain Name Service (DNS). DNS is
a service which takes the url and gives the IP address. The browser makes a connection to this returned
IP address. DNSs used by CDNs have special algorithms that change the IP address returned to the client
based on the location of the client.

Figure 22.6: CDN Request Processing

Question: If it’s a local load balancer does it use concepts like least loaded, round robin?
Answer: Yes, that is exactly local load balancer does. As long as content is replicated you send it to any
of the caches, if its not you have to look at url and only send it to the subset that have it.

Question: Do edge proxies use cooperative caching?
Answer: In this case, no need to do cooperative caching. Essentially going to replicate content and local
load balancing will ensure that the server you are getting mapped to has a copy of the content.

Question: Are DNS and CDN independent services?
Answer: In this case, the DNS is run by the CDN server. Your browser will send a request to your local
DNS. That DNS server will send that request to another server responsible for the domain you are going
after. For example cnn.com/newsvideo.mp4. Cnn would in this case have the CDN run its DNS service for
it so then the request goes to CDN where all of this happens i.e deciding the closest server. DNS is indeed
separate from CDNs but some DNS servers in this case are going to be run by CDN and those are the servers
for domains that it is actually caching content for.
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Question: Is there criteria apart from geographical proximity that is used to do load balancing?
Answer: This is the case. Proximity is not the only criterion, there will be a lot more sophistication to
handle overload etc. For example - fault tolerance has to be built in.

CDNs have evolved from simple caches to running entire applications at the edge. Figure 22.7 shows CDN
hosting web apps. Dynamic content is not cacheable so caches are less useful for CDNs. So CDNs allow
running applications on edge server at low latency.

Figure 22.7: CDN Hosting web apps

22.4.3 Mobile Edge Computing

Allows mobile devices to offload compute-intensive tasks to edge servers. Use cases are mobile AR/VR
where the mobile device had to process graphics heavy content that drained battery life faster and heavy
duty computation was required. Since users are interacting with the system, low latency is very important.
Edge servers provided both compute power as well as low latency.

Mobile devices today are much more capable and need to offload from smartphones has reduced. Other
devices today that are not as capable such as headsets still use mobile edge computing for offloading compute
intensive tasks.


